return to top
source
This file proves the pentagonal number theorem for real/complex numbers.
Pentagonal number theorem for real/complex numbers, summation over natural numbers.
$$ \prod_{n = 0}^{\infty} 1 - x^{n + 1} = \sum_{k=0}^{\infty} (-1)^k \left(x^{k(3k+1)/2} + x^{(k+1)(3k+2)/2}\right) $$
Pentagonal number theorem for real/complex numbers, summation over integers, opposite order.
$$ \prod_{n = 0}^{\infty} 1 - x^{n + 1} = \sum_{k=-\infty}^{\infty} (-1)^k x^{k(3k + 1)/2} $$
Pentagonal number theorem for real/complex numbers, summation over integers, classic order.
$$ \prod_{n = 0}^{\infty} 1 - x^{n + 1} = \sum_{k=-\infty}^{\infty} (-1)^k x^{k(3k - 1)/2} $$