theorem
Nat.Partition.hasProd_powerSeriesMk_card_partition
(R : Type u_1)
[CommRing R]
[TopologicalSpace R]
[T2Space R]
[IsTopologicalSemiring R]
:
HasProd (fun (i : ℕ) => ∑' (j : ℕ), PowerSeries.X ^ ((i + 1) * j))
(PowerSeries.mk fun (n : ℕ) => ↑(Fintype.card n.Partition))
theorem
Nat.Partition.powerSeriesMk_card_partition_mul_tprod_one_sub_pow
(R : Type u_1)
[CommRing R]
[TopologicalSpace R]
[T2Space R]
[Nontrivial R]
[IsTopologicalRing R]
[NoZeroDivisors R]
:
(PowerSeries.mk fun (n : ℕ) => ↑(Fintype.card n.Partition)) * ∏' (i : ℕ), (1 - PowerSeries.X ^ (i + 1)) = 1
The recurrence relation of (non-distinct) partition function $p(n)$:
$$\sum_{k \in \mathbb{Z}} (-1)^k p(n - k(3k-1)/2) = 0 \quad (n > 0)$$
Note that this is a finite sum, as the term for $k$ outside $n - k(3k-1)/2 ≥ 0$ vanishes. Here we explicitly restrict the set of $k$.