Documentation

BiasedBisect.Inv

Inverse function φ #

We explore more about the function φ, which is the "inverse function" of dE.

Main statements #

φ is simply defined as Jceiled shifted by 1.

noncomputable def φ (s t : ) [PosReal s] [PosReal t] (δ : ) :
Equations
Instances For
    theorem φ_mono (s t : ) [PosReal s] [PosReal t] :
    Monotone (φ s t)
    theorem φ_pos (s t : ) [PosReal s] [PosReal t] (δ : ) :
    0 < φ s t δ

    φ is also a stair-case like function. It doesn't really have a inverse function in the strict sense, but we can describe its relation ship with dE by the following.

    noncomputable def δceiledByφ (s t n : ) [PosReal s] [PosReal t] :
    Equations
    Instances For
      theorem φ_inv (s t n : ) (n1 : n 1) [PosReal s] [PosReal t] :
      δceiledByφ s t n = Set.Iio (dE s t n)

      Another way to show this, is that φ maps δₖ back to nₖ, though the index k is shifted due to our convention of close/open intervals.

      theorem φδₖ (s t : ) (k : ) [PosReal s] [PosReal t] :
      φ s t (δₖ s t k) = nₖ s t (k + 1)

      Analog to w_eq/w_lt/w_gt lemmas, φ maps δₖ - t back to wₖ (again with shifted k).

      theorem φδₖt (s t : ) (k : ) [PosReal s] [PosReal t] :
      φ s t (δₖ s t k - t) = wₖ s t (k + 1)

      Two lemmas similar to Jline_s and Jline_t

      theorem Jceiled_s (s t δ : ) [PosReal s] [PosReal t] :
      Jceiled s t (δ - s) = x(Λceiled s t δ).toFinset, match x with | (p, q) => shut p (Jₚ (p - 1, q))
      theorem Jceiled_t (s t δ : ) [PosReal s] [PosReal t] :
      Jceiled s t (δ - t) = x(Λceiled s t δ).toFinset, match x with | (p, q) => shut q (Jₚ (p, q - 1))

      φ(δ) is the unique function that satifies the following conditions:

      theorem φ_neg (s t δ : ) (dneg : δ < 0) [PosReal s] [PosReal t] :
      φ s t δ = 1
      theorem φ_rec (s t δ : ) (dpos : δ 0) [PosReal s] [PosReal t] :
      φ s t δ = φ s t (δ - s) + φ s t (δ - t)

      φ grows as fast as exponential, and the rate is ρ. Here we show the exponential growth with an undetermined, but bounded coefficient.

      theorem φ_bound (s t x : ) (h : -max s t x) [PosReal s] [PosReal t] :
      (φ s t x) Set.Icc (Real.exp (ρ s t * x)) (Real.exp (ρ s t * (x + max s t)))