Documentation

BiasedBisect.MathlibMeasureTheoryIntegralAsymptotics

theorem Asymptotics.IsBigOWith.atTop_integral_Iic_of_nonneg_of_tendsto_integral {α : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] [LinearOrder α] [Nonempty α] [OrderClosedTopology α] {f : αE} {g : α} {μ : MeasureTheory.Measure α} {c : } (hfg : IsBigOWith c Filter.atTop f g) (hf : ∀ (a : α), MeasureTheory.IntegrableOn f (Set.Iic a) μ) (hg : ∀ (a : α), MeasureTheory.IntegrableOn g (Set.Iic a) μ) (h_nonneg : ∀ᶠ (x : α) in Filter.atTop, 0 g x) (h_tendsto : Filter.Tendsto (fun (a : α) => (x : α) in Set.Iic a, g x μ) Filter.atTop Filter.atTop) (c' : ) :
c' > cIsBigOWith c' Filter.atTop (fun (a : α) => (x : α) in Set.Iic a, f x μ) fun (a : α) => (x : α) in Set.Iic a, g x μ
theorem Asymptotics.IsBigO.atTop_integral_Iic_of_nonneg_of_tendsto_integral {α : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] [LinearOrder α] [Nonempty α] [OrderClosedTopology α] {f : αE} {g : α} {μ : MeasureTheory.Measure α} (hfg : f =O[Filter.atTop] g) (hf : ∀ (a : α), MeasureTheory.IntegrableOn f (Set.Iic a) μ) (hg : ∀ (a : α), MeasureTheory.IntegrableOn g (Set.Iic a) μ) (h_nonneg : ∀ᶠ (x : α) in Filter.atTop, 0 g x) (h_tendsto : Filter.Tendsto (fun (a : α) => (x : α) in Set.Iic a, g x μ) Filter.atTop Filter.atTop) :
(fun (a : α) => (x : α) in Set.Iic a, f x μ) =O[Filter.atTop] fun (a : α) => (x : α) in Set.Iic a, g x μ
theorem Asymptotics.IsLittleO.atTop_integral_Iic_of_nonneg_of_tendsto_integral {α : Type u_1} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [TopologicalSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] [LinearOrder α] [Nonempty α] [OrderClosedTopology α] {f : αE} {g : α} {μ : MeasureTheory.Measure α} (hfg : f =o[Filter.atTop] g) (hf : ∀ (a : α), MeasureTheory.IntegrableOn f (Set.Iic a) μ) (hg : ∀ (a : α), MeasureTheory.IntegrableOn g (Set.Iic a) μ) (h_nonneg : ∀ᶠ (x : α) in Filter.atTop, 0 g x) (h_tendsto : Filter.Tendsto (fun (a : α) => (x : α) in Set.Iic a, g x μ) Filter.atTop Filter.atTop) :
(fun (a : α) => (x : α) in Set.Iic a, f x μ) =o[Filter.atTop] fun (a : α) => (x : α) in Set.Iic a, g x μ
theorem Asymptotics.IsEquivalent.atTop_integral_Iic_of_nonneg_of_tendsto_integral {α : Type u_1} [TopologicalSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] [LinearOrder α] [Nonempty α] [OrderClosedTopology α] {g : α} {μ : MeasureTheory.Measure α} {f : α} (hfg : IsEquivalent Filter.atTop f g) (hf : ∀ (a : α), MeasureTheory.IntegrableOn f (Set.Iic a) μ) (hg : ∀ (a : α), MeasureTheory.IntegrableOn g (Set.Iic a) μ) (h_nonneg : ∀ᶠ (x : α) in Filter.atTop, 0 g x) (h_tendsto : Filter.Tendsto (fun (a : α) => (x : α) in Set.Iic a, g x μ) Filter.atTop Filter.atTop) :
IsEquivalent Filter.atTop (fun (a : α) => (x : α) in Set.Iic a, f x μ) fun (a : α) => (x : α) in Set.Iic a, g x μ
theorem Asymptotics.IsEquivalent.integral_real_Ioc {f g : } (hfg : IsEquivalent Filter.atTop f g) {a : } (hf : xa, MeasureTheory.IntegrableOn f (Set.Ioc a x) MeasureTheory.volume) (hg : xa, MeasureTheory.IntegrableOn g (Set.Ioc a x) MeasureTheory.volume) (h_tendsto : Filter.Tendsto g Filter.atTop Filter.atTop) :
IsEquivalent Filter.atTop (fun (x : ) => (t : ) in Set.Ioc a x, f t) fun (x : ) => (t : ) in Set.Ioc a x, g t