theorem
Asymptotics.IsBigOWith.atTop_integral_Iic_of_nonneg_of_tendsto_integral
{α : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[TopologicalSpace α]
[MeasurableSpace α]
[OpensMeasurableSpace α]
[LinearOrder α]
[Nonempty α]
[OrderClosedTopology α]
{f : α → E}
{g : α → ℝ}
{μ : MeasureTheory.Measure α}
{c : ℝ}
(hfg : IsBigOWith c Filter.atTop f g)
(hf : ∀ (a : α), MeasureTheory.IntegrableOn f (Set.Iic a) μ)
(hg : ∀ (a : α), MeasureTheory.IntegrableOn g (Set.Iic a) μ)
(h_nonneg : ∀ᶠ (x : α) in Filter.atTop, 0 ≤ g x)
(h_tendsto : Filter.Tendsto (fun (a : α) => ∫ (x : α) in Set.Iic a, g x ∂μ) Filter.atTop Filter.atTop)
(c' : ℝ)
:
theorem
Asymptotics.IsBigO.atTop_integral_Iic_of_nonneg_of_tendsto_integral
{α : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[TopologicalSpace α]
[MeasurableSpace α]
[OpensMeasurableSpace α]
[LinearOrder α]
[Nonempty α]
[OrderClosedTopology α]
{f : α → E}
{g : α → ℝ}
{μ : MeasureTheory.Measure α}
(hfg : f =O[Filter.atTop] g)
(hf : ∀ (a : α), MeasureTheory.IntegrableOn f (Set.Iic a) μ)
(hg : ∀ (a : α), MeasureTheory.IntegrableOn g (Set.Iic a) μ)
(h_nonneg : ∀ᶠ (x : α) in Filter.atTop, 0 ≤ g x)
(h_tendsto : Filter.Tendsto (fun (a : α) => ∫ (x : α) in Set.Iic a, g x ∂μ) Filter.atTop Filter.atTop)
:
theorem
Asymptotics.IsLittleO.atTop_integral_Iic_of_nonneg_of_tendsto_integral
{α : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[TopologicalSpace α]
[MeasurableSpace α]
[OpensMeasurableSpace α]
[LinearOrder α]
[Nonempty α]
[OrderClosedTopology α]
{f : α → E}
{g : α → ℝ}
{μ : MeasureTheory.Measure α}
(hfg : f =o[Filter.atTop] g)
(hf : ∀ (a : α), MeasureTheory.IntegrableOn f (Set.Iic a) μ)
(hg : ∀ (a : α), MeasureTheory.IntegrableOn g (Set.Iic a) μ)
(h_nonneg : ∀ᶠ (x : α) in Filter.atTop, 0 ≤ g x)
(h_tendsto : Filter.Tendsto (fun (a : α) => ∫ (x : α) in Set.Iic a, g x ∂μ) Filter.atTop Filter.atTop)
:
theorem
Asymptotics.IsEquivalent.atTop_integral_Iic_of_nonneg_of_tendsto_integral
{α : Type u_1}
[TopologicalSpace α]
[MeasurableSpace α]
[OpensMeasurableSpace α]
[LinearOrder α]
[Nonempty α]
[OrderClosedTopology α]
{g : α → ℝ}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hfg : IsEquivalent Filter.atTop f g)
(hf : ∀ (a : α), MeasureTheory.IntegrableOn f (Set.Iic a) μ)
(hg : ∀ (a : α), MeasureTheory.IntegrableOn g (Set.Iic a) μ)
(h_nonneg : ∀ᶠ (x : α) in Filter.atTop, 0 ≤ g x)
(h_tendsto : Filter.Tendsto (fun (a : α) => ∫ (x : α) in Set.Iic a, g x ∂μ) Filter.atTop Filter.atTop)
:
theorem
Asymptotics.IsEquivalent.integral_real_Ioc
{f g : ℝ → ℝ}
(hfg : IsEquivalent Filter.atTop f g)
{a : ℝ}
(hf : ∀ x ≥ a, MeasureTheory.IntegrableOn f (Set.Ioc a x) MeasureTheory.volume)
(hg : ∀ x ≥ a, MeasureTheory.IntegrableOn g (Set.Ioc a x) MeasureTheory.volume)
(h_tendsto : Filter.Tendsto g Filter.atTop Filter.atTop)
: