theorem
φRegContinuousAt
(s t μ σ x : ℝ)
(hx : x ≠ 0)
[PosReal s]
[PosReal t]
[PosReal μ]
:
ContinuousAt (φReg s t μ σ) x
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
φReg_Fourier1
(s t μ σ f : ℝ)
:
Real.fourierIntegral (fun (x : ℝ) => ↑(φReg s t μ σ x)) f = ∫ (x : ℝ), φRegFourierIntegrant s t μ σ f x
theorem
φRegFourierIntegrantRw1
(s t μ σ f x : ℝ)
:
φRegFourierIntegrant s t μ σ f x = φRegFourierIntegrantLeft σ f x + φRegFourierIntegrantRight s t μ σ f x
theorem
integrable_exp_mul_complex_Ioi
{a : ℝ}
{c : ℂ}
(hc : c.re < 0)
:
MeasureTheory.IntegrableOn (fun (x : ℝ) => Complex.exp (c * ↑x)) (Set.Ioi a) MeasureTheory.volume
Equations
- φRegFourierIntegrantRightSummand δ μ l = ∫ (x : ℝ), Complex.exp (l * ↑x) * ↑(smStep μ (x - δ))
Instances For
theorem
φRegFourierIntegrantRightSummandEq
(δ μ : ℝ)
(l : ℂ)
(hl : l.re < 0)
[PosReal μ]
:
φRegFourierIntegrantRightSummand δ μ l = Complex.exp (l * ↑δ) * (1 - Complex.exp (l * ↑μ)) / (l ^ 2 * ↑μ)
Equations
- One or more equations did not get rendered due to their size.