Documentation

BiasedBisect.Fourier

theorem ne_zero_of_re_neg {s : } (hs : 0 > s.re) :
s 0
theorem φ_grossBound (s t x : ) (h : x -max s t) [PosReal s] [PosReal t] :
(φ s t x) Real.exp (Real.log 2 / min s t * x) * Real.exp (Real.log 2 / min s t * max s t)
noncomputable def smStep (μ x : ) :
Equations
Instances For
    theorem smStepLe1 (μ x : ) [PosReal μ] :
    smStep μ x 1
    theorem smStepNonneg (μ x : ) [PosReal μ] :
    0 smStep μ x
    noncomputable def φReg (s t μ σ x : ) :
    Equations
    Instances For
      theorem φRegLe (s t μ σ x : ) [PosReal s] [PosReal t] [PosReal μ] :
      φReg s t μ σ x Real.exp (-σ * x) * (φ s t x)
      theorem φReg_neg (s t μ σ x : ) (h : x < 0) [PosReal s] [PosReal t] :
      φReg s t μ σ x = 0
      theorem φRegBound (s t μ σ x : ) [PosReal s] [PosReal t] [PosReal μ] :
      φReg s t μ σ x Real.exp ((Real.log 2 / min s t - σ) * x) * Real.exp (Real.log 2 / min s t * max s t)
      theorem φRegNonneg (s t μ σ x : ) [PosReal s] [PosReal t] [PosReal μ] :
      0 φReg s t μ σ x
      theorem JceiledContinuous (s t μ : ) [PosReal s] [PosReal t] [PosReal μ] :
      Continuous fun (x : ) => ∑' (pq : × ), (Jₚ pq) * smStep μ (x - (pq.1 * s + pq.2 * t))
      theorem φRegContinuousAt (s t μ σ x : ) (hx : x 0) [PosReal s] [PosReal t] [PosReal μ] :
      ContinuousAt (φReg s t μ σ) x
      theorem φRegMeasurable (s t μ σ : ) [PosReal s] [PosReal t] [PosReal μ] :
      Measurable (φReg s t μ σ)
      noncomputable def φRegFourierIntegrant (s t μ σ f x : ) :
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem φReg_Fourier1 (s t μ σ f : ) :
        Real.fourierIntegral (fun (x : ) => (φReg s t μ σ x)) f = (x : ), φRegFourierIntegrant s t μ σ f x
        noncomputable def φRegFourierIntegrantLeft (σ f x : ) :
        Equations
        Instances For
          noncomputable def φRegFourierIntegrantRight (s t μ σ f x : ) :
          Equations
          Instances For
            theorem indicator_cast {α : Type u_1} {s : Set α} {f : α} {x : α} :
            (s.indicator f x) = s.indicator (fun (a : α) => (f a)) x
            theorem rexp_mul_n (x : ) (n : ) :
            Real.exp (x * n) = Real.exp x ^ n
            theorem φReg_Fourier2 (s t μ σ f : ) (σBound : Real.log 2 / min s t < σ) [PosReal s] [PosReal t] [PosReal μ] :
            Real.fourierIntegral (fun (x : ) => (φReg s t μ σ x)) f = (2 * Real.pi * f * Complex.I + σ)⁻¹ + (x : ), φRegFourierIntegrantRight s t μ σ f x
            noncomputable def φRegFourierIntegrantRightSummand (δ μ : ) (l : ) :
            Equations
            Instances For
              theorem φRegFourierIntegrantRightExchange (s t μ σ f : ) (σBound : Real.log 2 / min s t < σ) [PosReal s] [PosReal t] [PosReal μ] :
              (x : ), φRegFourierIntegrantRight s t μ σ f x = ∑' (pq : × ), (Jₚ pq) * φRegFourierIntegrantRightSummand (pq.1 * s + pq.2 * t) μ (-(2 * Real.pi * f * Complex.I + σ))
              theorem φRegFourierIntegrantRightSummandEq (δ μ : ) (l : ) (hl : l.re < 0) [PosReal μ] :
              φRegFourierIntegrantRightSummand δ μ l = Complex.exp (l * δ) * (1 - Complex.exp (l * μ)) / (l ^ 2 * μ)
              noncomputable def φRegFourierResult (s t μ σ f : ) :
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem φReg_Fourier (s t μ σ : ) (σBound : Real.log 2 / min s t < σ) [PosReal s] [PosReal t] [PosReal μ] :
                (Real.fourierIntegral fun (x : ) => (φReg s t μ σ x)) = φRegFourierResult s t μ σ